(i) (2x+1)3Using identity (a+b)3=a3+b3+3ab(a+b)=(2x)3+13+3(2x)(1)(2x+1)=8x3+1+6x(2x+1)=8x3+12x2+6x+1
(ii) (2a−3b)3Using identity (a−b)3=a3−b3−3ab(a−b)=(2a)3−(3b)3−3×2a×3b(2a−3b)=8a3−27b3−18ab(2a−3b)=8a3−27b3−36a2b+54ab2
(iii) [32x+1]3Using identity (a+b)3=a3+b3+3ab(a+b)=(32x)3+13+3(32x)(1)(32x+1)=278x3+1+92x(32x+1)=278x3+274x2+92x+1
(iv) [x−23y]3Using identity (a−b)3=a3−b3−3ab(a−b)=x3−(32y)3−3(x)(23y)(x−23y)=x3−827y3−2xy(x−23y)=x3−827y3−2x2y+43xy2