Let ΔABC in which ∠B=90∘ and ∠C=θ
According to the question,
cot θ=BCAB=78
Let BC = 7k and AB = 8k, where k is a positive real number.
By Pythagoras theorem in ΔABC; we get,
AC2=AB2+BC2
AC2=(8k)2+(7k)2
AC2=64k2+49k2
AC2=113k2
AC=√113k
sin θ=ABAC=8k√113k=8√113
and cos θ=BCAC=7k√113k=7√113……(i)
⇒(1+sin θ)(1−sin θ)(1+cos θ)(1−cos θ)=(1−sin2 θ)(1−cos2 θ)={1−(8√113)2}{1−(7√113)2}={1−(64113)}{1−(49113)}={(113−64)113}{(113−49)113}=4964