PA is the bisector of ∠QPR.
∴ ∠QPA=∠APR ....(i)
In ΔPQM ∠Q+∠PMQ+∠QPM=180∘
[Angle sum property of triangles]
⇒∠Q+90∘+∠QPM=180∘
[∠PMQ=90∘]
⇒∠Q=90∘−∠QPM ...(ii)
In ΔPMR, ∠PMR+∠R+∠RPM=180∘
[Angle sum property of triangles]
⇒90∘+∠R+∠RPM=180∘
[∠PMR=90∘]
⇒∠R=180∘−90∘−∠RPM ... (iii)
From equations (iii) from and (ii), we get
∠Q−∠R=(90∘−∠QPM)−(90∘−∠RPM)
⇒∠Q−∠R=∠RPM−∠QPM
⇒∠Q−∠R=(∠RPA+∠APM)−(∠QPA−∠APM) ...(iv)
⇒∠Q−∠R=∠APM+∠APM
[Using equation (1)]
⇒∠Q−∠R=2∠APM
∴∠APM=12(∠Q−∠R)