According to the question,
A(2,-4) is equidistant from P(3,8) amd Q(-10,y).
i.e.,PA = QA
⇒=√(2−3)2+(−4−8)2=√(2+10)2+(−4−y)2⎡⎢
⎢⎣∵Distance between the points(x1,y1) and (x2,y2),d=√(x2−x1)2+(y2−y1)2⎤⎥
⎥⎦⇒√(−1)2+(−12)2=√(12)2+(4+y)2⇒√1+144=√144+16+y2+8y⇒√145=√160+y2+8yOn squaring both the sides, we get145=160+y2+8y⇒y2+8y+160−145=0⇒y2+8y+15=0⇒y2+5y+3y+15=0⇒y(y+5)+3(y+5)=0⇒(y+5)(y+3)=0If y+5=0,then y=−5If y+3=0,then y=−3∴y=−3 and −5Now, distance between P(3,8) and Q(−10,y),PQ=√(−10−3)2+(y−8)2 [putting y=−3]⇒=√(−13)2+(−3−8)2=√169+121=√290Again, distance between P(3,8) and (-10,y), PQ=√(−13)2+(−5−8)2 [putting y=−5]=√169+169=√338
Hence, the values of y are -3, -5 and corresponding values of PQ are √290 and √338=13√2, respectively.