Question 8 (ii) In the given figure, O is a point in the interior of a triangle ABC, OD \(\perp\) BC, OE \(\perp\) AC and OF \(\perp\) AB. Show that (ii) \( AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2\)
Open in App
Solution
(ii) Join OA, OB and OC
We have,OA2+OB2+OC2−OD2−OE2−OF2=AF2+BD2+CE2 AF2+BD2+EC2=(OA2−OE2)+(OC2−OD2)+(OB2−OF2) ∴AF2+BD2+CE2=AE2+CD2+BF2