Question 8
The mean of the following frequency distribution is 50 but the frequencies f1 and f2 in classes 20-40 and 60-80, respectively are not known. Find these frequencies, if the sum of all the frequencies is 120.
Class0−2020−4040−6060−8080−100Frequency17f132f219
First, we calculate the class mark of given data
ClassFrequency (fi)Class marks(xi) ui=xi−ah fiui0−201710 −2 −3420−40f130 −1 −f140−6032a=50 0 060−80f270 1 f280−1001990 2 38∑fi=68+f1+f2∑fiui=4+f2−f1
Given that, sum of all frequencies=120
⇒∑fi=68+f1+f2=120⇒f1+f2=52 (i)
Here, (assumed mean) a=50
and (class width) h=20
By step deviation method,
Mean =a + ∑fiui∑fi×h⇒50=50+(4+f2−f1)120×20⇒4+f2+f1=0⇒−f2+f1=4 ....(ii)On adding Eqs. (i) and (ii), we get2f1=56⇒f1=28
Put the value of f1 in Eq.(i), we get
f2=52−28⇒f2=24
Hence, f1=28 and f2=24.