Question 8
The sides of a quadrilateral ABCD are 6 cm, 8 cm, 12 cm and 14 cm (taken in order) respectively, and the angle between the first two sides is a right angle. Find its area.
Open in App
Solution
Given ABCD is a quadrilateral having sides AB = 6cm, BC = 8cm, CD = 12cm, DA = 14cm.
Now join AC.
We have,ΔABC right-angled at B.
Now, AC2=AB2+BC2 [by Pythagoras theorem] =62+82=36+64=100 ⇒ AC = 10cm [taking positive square] ∴ Area of quadrilateral ABCD = AreaofΔABC+AreaofΔACD Now,AreaofΔABC=12×AB×BC ∵areaoftriangle=12(base×height) =12×6×8=24cm2
In ΔACD, AC = a = 10cm, CD = b = 12 cm
And DA = c = 14cm
Now, semi-perimeter of ΔACD, s=a+b+c2=10+12+142=362=18cm AreaofΔACD=√s(s−a)(s−b)(s−c)[byHerom′sformula] =√18(18−10)(18−12)(18−14) =√18×8×6×4=√(3)2×2×4×2×3×2×4 =3×4×2√3×2=24√6cm2
Area of quadrilateral ABCD = Area of ΔABC + Area of ΔACD =24+24√6=24(1+√6)cm2
Hence, the area of quadrilateral is 24(1+√6)cm2