wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Question 9
Prove that (a+b+c)3a3b3c3=3(a+b)(b+c)(c+a).

Open in App
Solution

To prove, (a+b+c)3a3b3c3=3(a+b)(b+c)(c+a).
LHS=[(a+b+c)3a3](b3+c3)
=(a+b+ca)[(a+b+c)2+a2+a(a+b+c)][(b+c)(b2+c2bc)]
[Using identity, a3+b3=(a+b)(a2+b2ab) and a3b3=(ab)(a2+b2+ab)]
=(b+c)[a2+b2+c2+2ab+2bc+2ca+a2+a2+ab+ac](b+c)(b2+c2bc)
=(b+c)[b2+c2+3a2+3ab+3acb2c2+3bc]
=(b+c)[3(a2+ab+ac+bc)]
=3(b+c)[a(a+b)+c(a+b)]
=3(b+c)[(a+c)(a+b)]
=3(a+b)(b+c)(c+a)=RHS
Hence proved.

flag
Suggest Corrections
thumbs-up
16
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon