To prove, (a+b+c)3–a3–b3–c3=3(a+b)(b+c)(c+a).
LHS=[(a+b+c)3–a3]–(b3+c3)
=(a+b+c−a)[(a+b+c)2+a2+a(a+b+c)]−[(b+c)(b2+c2−bc)]
[Using identity, a3+b3=(a+b)(a2+b2−ab) and a3–b3=(a−b)(a2+b2+ab)]
=(b+c)[a2+b2+c2+2ab+2bc+2ca+a2+a2+ab+ac]−(b+c)(b2+c2−bc)
=(b+c)[b2+c2+3a2+3ab+3ac−b2−c2+3bc]
=(b+c)[3(a2+ab+ac+bc)]
=3(b+c)[a(a+b)+c(a+b)]
=3(b+c)[(a+c)(a+b)]
=3(a+b)(b+c)(c+a)=RHS
Hence proved.