(i)√45−3√20+4√5=√3×3×5−3√2×2×5+4√5=3√5−3×2√5+4√5=3√5−6√5+4√5=√5
(ii)√248+√549=√2×2×2×38+√3×3×3×29=2√68+3√69=√64+√63=3√6+4√612=7√612
(iii)4√12×7√6=4√2×2×3×7√2×6
=8√3×7√2×3
=168√2
(iv)4√28÷3√7÷3√7=83×713
(v)3√3+2√27+7√3=3√3+2√3×3×3+7√3×√3√3=3√3+6√3+7√33=9√3+7√33
27√3+7√33=34√33
(vi)(√3−√2)2=(√3)2+(√2)2−2√3×√2[Using identity (a−b)2=a2+b2−2ab]=3+2−2√3×2=5−2√6
(vii)4√81−83√216+155√32+√225=(81)14−8×(216)13+15×(32)15+√(15)2[∴m√a=a1/m]
=(34)14−8×63.13+15×25.15+15
=34.14−8×63.13+15×25.15+15[∴(am)n=amn]
=31−8×61+15×21+15
=3−48+30+15
=48−48=0
(viii)3√8+1√2=3√2×2×2+1√2=32√2+1√2
=3+22√2=52√2×√2√2
[Multiplying numerator and denominator by √2 ]
=5√22×2=5√24
(ix)2√33−√36=4√3−√36=3√36=√32