Given pair of equations is
2xyx+y=32,where x+y≠0⇒x+y2xy=23xxy+yxy=431y+1x=43and xy2x−y=−310, where 2x−y≠0⇒ 2x−yxy=−103
⇒ 2xxy−yxy=−103⇒ 2y−1x=−103
Now, piu 1x=u and 1y=v, then the pair of equations becomes
v+u=43and 2v−u=−103
on adding both equations, we get
3v=43−103=−63⇒ 3v=−2⇒ v=−23
Now, put the value of v in Eq. (iii), we get
−23+u=43⇒ u=43+23=63=2 x=1u=12and 1v=1(−23)=−32
Hence, the required values of x and y are 12 and −32 respectively