The correct option is A 42n+1
Here f=R−[R] is the fractional part of R thus if I is the integral part of R Then
R=I+f=(5√5+11)2n+1 and 0<f<1Letf′=(5√5−11)2n+1.Then 0<f′<1 (as 5√5−11<1)
Now I+f−f′=(5√5+11)2n+1−(5√5−11)2n+1=2[2n+1C1(5√5)2n×11+2n+1C3(5√5)2n−2×113+⋯]
= an even integer
⇒f−f′ must also be an integer
⇒f−f′=0,(∵0<f<1,0<f′<1,∴−1<f−f′<1)
⇒f=f′
∴RF=RF′=(5√5+11)2n+1(5√5−11)2n+1=(125−121)2n+1=42n+1