wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(r2 +)(r2+2)(x2 +3) (2 +4)18.

Open in App
Solution

The integral is given as,

I= ( x 2 +1 )( x 2 +2 ) ( x 2 +3 )( x 2 +4 ) dx

Simplify the given integration.

( x 2 +1 )( x 2 +2 ) ( x 2 +3 )( x 2 +4 ) =1 ( 4 x 2 +10 ) ( x 2 +3 )( x 2 +4 )

Use partial fraction rule.

4 x 2 +10 ( x 2 +3 )( x 2 +4 ) = Ax+B x 2 +3 + Cx+D x 2 +4 4 x 2 +10=( Ax+B )( x 2 +4 )+( Cx+D )( x 2 +3 ) 4 x 2 +10= x 3 ( A+C )+ x 2 ( B+D )+x( 4A+3C )+( 4B+3D )

Equate the coefficients of x 3 , x 2 ,xand constant terms.

A+C=0 B+D=4 4A+3C=0 4B+3D=10

By solving the above equation, we get

A=C=0,B=2,D=6

Substitute the values and reduce the integral.

I= dx ( 4 x 2 +10 ) ( x 2 +3 )( x 2 +4 ) dx I=x[ 2dx ( x 2 +3 ) +6 dx ( x 2 +4 ) ] I=x[ 2 dx x 2 + ( 3 ) 2 +6 dx ( x 2 + 2 2 ) ]

On integrating, we get

I=x+ 2 3 tan 1 x 3 6 2 tan 1 x 2 I=x+ 2 3 tan 1 x 3 3 tan 1 x 2 +C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon