The integral is given as,
I= ∫ ( x 2 +1 )( x 2 +2 ) ( x 2 +3 )( x 2 +4 ) dx
Simplify the given integration.
( x 2 +1 )( x 2 +2 ) ( x 2 +3 )( x 2 +4 ) =1− ( 4 x 2 +10 ) ( x 2 +3 )( x 2 +4 )
Use partial fraction rule.
4 x 2 +10 ( x 2 +3 )( x 2 +4 ) = Ax+B x 2 +3 + Cx+D x 2 +4 4 x 2 +10=( Ax+B )( x 2 +4 )+( Cx+D )( x 2 +3 ) 4 x 2 +10= x 3 ( A+C )+ x 2 ( B+D )+x( 4A+3C )+( 4B+3D )
Equate the coefficients of x 3 , x 2 ,xand constant terms.
A+C=0 B+D=4 4A+3C=0 4B+3D=10
By solving the above equation, we get
A=C=0, B=−2, D=6
Substitute the values and reduce the integral.
I= ∫ dx− ∫ ( 4 x 2 +10 ) ( x 2 +3 )( x 2 +4 ) dx I=x−[ ∫ −2dx ( x 2 +3 ) +6 ∫ dx ( x 2 +4 ) ] I=x−[ −2 ∫ dx x 2 + ( 3 ) 2 +6 ∫ dx ( x 2 + 2 2 ) ]
On integrating, we get
I=x+ 2 3 tan −1 x 3 − 6 2 tan −1 x 2 I=x+ 2 3 tan −1 x 3 −3 tan −1 x 2 +C