Given:
Radius of the solenoid, r = 2 cm = 2 × 10−2 m
Number of turns per centimetre, n = 100 = 10000 turns/m
Current flowing through the coil, i = 5 A
The magnetic field through the solenoid is given by
B = μ0ni = 4π × 10−7 × 10000 × 5
= 20π × 10−3 T
Flux linking with per turn of the second solenoid = Bπr2 = Bπ × 10−4
Total flux linking the second coil, ϕ1 = Bn2πr2
∴ ϕ1 = 100 × π × 10−4 × 20π × 10−3
When the direction of the current is reversed, the total flux linking the second coil is given by
ϕ2 = −Bn2πr2
= −(100 × π × 10−4 × 20π × 10−3 )
The change in the flux through the second coil is given by
Δϕ = ϕ2 − ϕ1
= 2 × (100 × π × 10−4 × 20π × 10−3)
Now,
The current through the solenoid is given by
The charge flown through the galvanometer is given by