wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

radiuA long solenoid ofs 2 cm has 100 turns/cm and carries a current of 5 A. A coil of radius 1 cm having 100 turns and a total resistance of 20 Ω is placed inside the solenoid coaxially. The coil is connected to a galvanometer. If the current in the solenoid is reversed in direction, find the charge flown through the galvanometer.

Open in App
Solution

Given:
Radius of the solenoid, r = 2 cm = 2 × 10−2 m
Number of turns per centimetre, n = 100 = 10000 turns/m
Current flowing through the coil, i = 5 A
The magnetic field through the solenoid is given by
B = μ0ni = 4π × 10−7 × 10000 × 5
= 20π × 10−3 T

Flux linking with per turn of the second solenoid = Bπr2 = Bπ × 10−4
Total flux linking the second coil, ϕ1 = Bn2πr2
∴ ϕ1 = 100 × π × 10−4 × 20π × 10−3

When the direction of the current is reversed, the total flux linking the second coil is given by
ϕ2 = −Bn2πr2
= −(100 × π × 10−4 × 20π × 10−3 )

The change in the flux through the second coil is given by
Δϕ = ϕ2 − ϕ1
= 2 × (100 × π × 10−4 × 20π × 10−3)
Now,
e=ϕt=4π2×10-4t
The current through the solenoid is given by
I=eR=4π2×10-4t×20
The charge flown through the galvanometer is given by
q=It=4π2×10-420×dt×t =2×10-4 C

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Magnetic Field Due to a Current Carrying Wire
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon