The correct option is
C [π4,3π4]Given f(x)=sin−1(x)+cos−1(x)+tan−1(x)
First we will calculate domain of function f(x)
function sin−1(x) is defined in x∈[−1,1]
Similarly function cos−1(x) is defined in x∈[−1,1]
and function tan−1(x) is defined in x∈(−∞,+∞)
So f(x)=sin−1(x)+cos−1(x)+tan−1(x) is defined in x∈[−1,1]
So f(x)=sin−1(x)+cos−1(x)+tan−1(x) is defined in
x∈[−1,1]
So f(x)=π2+tan−1(x)
Now f'(x)=11+x2>0∀x∈[−1,1]
So f(x) is Strictly Increasing function.
So f(−1)=π2+tan−1(−1)=π2−π4=π4
and f(+1)=π2+tan−1(1)=π2+π4=3π4
So f(x)∈[π4,3π4]