The correct option is D (−∞,−7,−4√3]∪[−7+4√3,∞)
Let unknown polynomial be P(x). Let Q(x) and R(x) be the quotient and remainder, respectively, when it is divided by (x−3)(x−4). Then,
P(x)=(x−3)(x−4)Q(x)+R(x)
Then, we have
R(x)=ax+b
⇒P(x)=(x−3)(x−4)Q(x)+ax+b
Given that P(3)=2 and P(4)=1. Hence,
3a+b=2 and 4a+b=1
⇒a=−1 and b=5
⇒R(x)=5−x
f(x)=y=−x+5x2−3x+2
⇒yx2+(1−3y)x+2y−5=0
Now, x is real, then
D≥0
⇒(1−3y)2−4y(2y−5)≥0
or y2+14y+1≥0
or y∈(−∞,−14−√1922]∪[−14+√1922,∞)
(−∞,−7−4√3]∪[−7+4√3,∞)