Range of sin3x−sin3(3600−3x)+sin3(3600+3x)
Let f(x)=sin3x−sin(3(120−x))+sin3(120o+x)
=sin3x−sin(2π−3x)+sin(2π+3x)
=sin3x+sin3x+sin3x
=sin3x+2sin3x
=2(3sinx−4sin3x)+sin3x [sin3x=3sinx−4sin3x]
f(x)=6sinx−7sin3x
f′(x)=6cosx−21sin2xcosx=0
sin2x=621=27
if , sinx=0,f(x)=0
if , sinx=−1,f(x)=1
if , sinx=1,f(x)=−1
at sinx=−√27=−6√27+2√27=−4√27
sinx=√27=4√27
range ϵ[−4√27,4√27]