Range of the function f(x)=x2+x+2x2+x+1; xϵR is
(1, 73]
∴ y=x2+x+2x2+x+1,
y=1+1x2+x+1 [i.e y>1] . . . (i)
⇒ yx2+yx+y = x2+x+2
⇒ x2 (y - 1) + x(y - 1) + (y - 2) = 0,
∵ xϵ R⇒D≥0
⇒(y−1)2−4(y−1)(y−2)≥0
⇒ (y−1){(y−1)−4(y−2)} ≥0
⇒ (y−1)(−3y+7) ≥0
⇒1≤y≤73 . . . (ii)
From (i) and (ii), we get
1<y≤73