Question 79
Ratio of the area of ΔWXY to the area of ΔWZY is 3 : 4 in the given figure. If the area of ΔWXZ is 56 cm2 and WY = 8 cm, find the lengths of XY and YZ.
Given, area of ΔWXZ=56 cm2
⇒12×WY×XZ=56 [∵area of triangle=12×base×height]
⇒12×8×XZ=56⇒XZ=14cm [∵WY=8 cm, given]
∴ Area of ΔWXY : Area of ΔWZY=3:4
⇒Area of ΔWXYArea of ΔWZY=34
⇒12×WY×XY12×YZ×WY=34
⇒XYYZ=34
⇒XYXZ−XY=34[∵YZ=XZ−XY]
⇒XY14−XY=34 [by cross-mutiplication]
⇒4XY=42−3XY
7XY=42⇒XY=6cm
So, YZ = XZ - XY = 14-6
YZ = 8 cm
Hence, XY = 6 cm and YZ = 8 cm.