Rationalise and simplify the expression 1√2+√3+1√2−√5+2√5−√3
√2+√3+√5
0
1+√5
1+√3
1√2+√3+1√2−√5+2√5−√3 =12+√3×2−√32−√3+12−√5×2+√52+√5+2√5−√3×√5+√3√5+√3 Now, (a−b)×(a+b)=a2−b2⇒2−√34−3+2+√54−5+2×(√5+√35−3)⇒2−√31+2+√5−1+2×(√5+√32)⇒2−√3+(−2−√5)+√5+√3=0