Rationalise the denominator 1√7+√6−√13
Given:
1√7+√6−√13
Since, the conjugate surd of (√7+√6)−√13 is
(√7+√6)+√13
So, lets multiply both numerator and denominator by (√7+√6)+√13
1√7+√6−√13×√7+√6+√13√7+√6+√13
=√7+√6+√13(√7+√6)2−13 [∵(a+b)(a−b)=a2−b2]
=√7+√6+√137+6+2√7×6−13
=√7+√6+√132√42
=√72√42+√62√42+√132√42
=√612+√714+√132√42×√42√42
=√612+√714+√54684
=7√6+6√7+√54684
Here, the denominator is a rational number.
Hence, rationalized the denominator.