Rationalise the denominator of 1√6+√5−√11
Given: 1√6+√5−√11
We have to rationalize the denominator.
1√6+√5−√11×(√6+√5)+√11(√6+√5)+√11=√6+√5+√11(√6+√5)2−(√11)2 [Since, (a+b)(a−b)=a2−b2 ]
=√6+√5+√11(√6)2+(√5)2+2(√6)(√5)−11
=√6+√5+√116+5+2(√6)(√5)−11
=√6+√5+√1111+2(√30)−11
=√6+√5+√112(√30)×√30√30
=√6×30+√5×30+√11×302(√30)2
=√6×6×5+√5×6×5+√11×6×52(30)
=6√5+5√6+√33060 is the required answer.