The correct option is A −(√2+√6+24)
1√3−√2−1=1√3−√2−1×√3−√2+1√3−√2+1
=√3−√2+1(√3−√2−1)(√3−√2+1)
=√3−√2+1(√3−√2)2−12
=√3−√2+13+2−2√3×√2−1=√3−√2+14−2√6
=√3−√2+12(2−√6)=√3−√2+12(2−√6)×2+√62+√6
=(√3−√2+1)(2+√6)2(22−(√6)2)
=2√3−2√2+2+√3×√6−√2×√6+√62(4−6)
=2√3−2√2+2+√3×6−√2×6+√6−4
=2√3−2√2+2+√32×2−√22×3+√6−4
=2√3−2√2+2+3√2−2√3+√6−4
=√2+√6+2−4=−(√2+√6+24)