Rationalise the denominators of each of the following:
(i) 3√5
(ii) 32√5
(iii) 1√12
(iv) √2√5
(v) √3+1√2
(vi) √2+√5√3
(vii) 3√2√5
(i) 3√5=3×√5√5×√5=3√55=35√5
(ii) 32√5=3×√52×√5×√5=3√52×5=3√510=310√5
(iii) 1√12=1√4×3=12√3=1×√32√3×√3=√32×3=√36
(iv) √2√5=√2×√5√5×√5=√105=15√10
(v) √3+1√2=(√3+1)√2√2×√2=√6+√22
(vi) √2+√5√3=(√2+√5)×√3√3×√3=√6+√153
(vii) 3√2√5=3√2×√5√5×√5=3×√105=35√10