Rationalize the denominator of 42+√3+√7
42+√3+√7
=4(2+√3)+√7
The rationalizing factor of the denominator is [(2+√3)−√7]
=4(2+√3)+√7×(2+√3)−√7(2+√3)−√7
=4×(2+√3−√7)(2+√3)2−7
=4×(2+√3−√7)(4+4√3+3)−7
=4×(2+√3−√7)4√3
=(2+√3−√7)√3
The rationalizing factor of the denominator is √3.
=(2+√3−√7)√3×√3√3
=√3×(2+√3−√7)3
=2√3+3−√21)3
Hence, the fraction with a rational denominator is=2√3+3−√21)3.