(i) Let E=23√3
For rationalising the denominator, multiply numberator and denominator by √3,
E=23√3×√3√3=2√33×3=2√39
(ii)
Let E=√40√3
For rationailsing the denominator, multiply numerator and denominator by √3,
E=√40√3×√3√3=√40×3(√3)2=√1203=√2×2×2×5×33=23√30
(iii)
Let E=3+√24√2
For rationailsing the denominator, multiply numerator and denominator by √2,
E=3+√24√2×√2√2=3√2+(√2)24(√2)2=3√2+24×2=3√2+28
(iv)
Let E=16√41−5
For rationalising the denominator, multiply numerator and denominator by √41+5
E=16√41−5×√41+5√41+5
=16(√41+5)(√41)2−(5)2 [Using identity, (a−b)(a+b)=a2−b2]
=16(√41+5)16=√41+5
(v)
Let
E=2+√32−√3
For rationailsing the denominator, multiply numerator and denominator by 2+√3
E=2+√32−√3×2+√32+√3=(2+√3)2(2)2−(√3)2
[Using identity, (a−b)(a+b)=a2−b2]
=22+(√3)2+2×2×√34−3
[Using identity (a+b)2=a2+2ab+b2]
=4+3+4√3=7+4√3
(vi)
Let E=√6√2+√3
For rationalising the denominator, multiply numerator and denominator by √2−√3
E=√6√2+√3×√2−√3√2−√3=√6(√2−√3)(√2)2−(√3)2
[Using identity, (a−b)(a+b)=a2−b2]
√6(√2−√3)(√2)2−(√3)2=√6(√2−√3)−1=√6(√3−√2)=√18−√12=√9×2−√4×3=3√2−2√3
(vii)
For rationalising the denominator, multiply numerator and denominator by √3+√2
E=√3+√2√3−√2×√3+√2√3+√2−(√3+√2)2(√3)2−(√2)2
[Using identity, (a−b)(a+b)=a2−b2]
=3+2+2√6=5+2√6
(viii)
Let E=3√5+√3√5−√3
For rationalising the denominator, multiply numerator and denominator by √5+√3
E=3√5+√3√5−√3×√5+√3√5+√3=3√5(√5+√3)+√3(√5+√3)(√5)2−(√3)2 [Using identity, (a+b)(a−b)=a2−b2]
=15+3√15+√15+35−3=18+4√152=9+2√15
(ix)
Let E=4√3+5√2√48+√18=4√3+5√2√16×3+√9×2=4√3+5√24√3+3√2
For rationalising the denominator, multiply numerator and denominator by 4√3−3√2,
=4√3+5√24√3+3√2×(4√3−3√2)(4√3−3√2)=4√3(4√3−3√2)+5√2(4√3−3√2)(4√3)2−(3√2)2
[Using identity, (a+b)(a−b)=a2−b2]
=48−12√6+20√6−3030=18+8√630=9+4√615