wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Reduce each of the following expressions to the sine and cosine of a single expression:

(i) 3 sin θ-cos θ
(ii) cos θ − sin θ
(iii) 24 cos θ + 7 sin θ

Open in App
Solution

(i) Let fθ =3 sinθ - cosθDividing and multiplying by3+1 , i.e. by 2, we get: fθ =232 sinθ -12 cosθf(θ)= 2cosπ6sinθ-sinπ6cosθf(θ) = 2sinθ-π6Again, fθ =232 sinθ -12 cosθ fθ =2sinπ3 sinθ -cosπ3 cosθfθ =-2cosπ3+θ


(ii) Let fθ=cosθ-sinθDividing and multiplying by 12+12, i.e. by2, we get : fθ=212cosθ-12sinθ fθ=2(cos45°cosθ-sin45°sinθ) fθ=2cosπ4+θAgain, fθ=212cosθ-12sinθ fθ=2(sin45°cosθ-cos45°sinθ)f(θ) =2 sinπ4-θ


(iii) Let f(θ) =24 cosθ + 7sinθDividing and multiplying by 242+72, i.e.by 25, we get: f(θ) =252425 cosθ +725sinθf(θ) =25(sinα cosθ+ cosα sinθ), where sinα =2425 and cosα =725f(θ) =25 sin(α+θ), where tanα = 247 .Again, f(θ) =252425 cosθ +725sinθf(θ) =25(cosα cosθ+ sinα sinθ), where cosα=2425, sinα= 725.f(θ) =25 cos(α-θ), where tanα =724.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Right Angled Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon