wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Reduce each of the following expressions to the sine and cosine of a single expression:
(i) 3 sin x-cos x
(ii) cos x − sin x
(iii) 24 cos x + 7 sin x

Open in App
Solution

(i) Let fx =3 sinx - cosxDividing and multiplying by3+1 , i.e. by 2, we get: fx =232 sinx -12 cosxf(x)= 2cosπ6sinx-sinπ6cosxf(x) = 2sinx-π6Again, fx =232 sinx -12 cosx fx =2sinπ3 sinx -cosπ3 cosxfx =-2cosπ3+x

(ii) Let fx=cosx-sinxDividing and multiplying by 12+12, i.e. by2, we get : fx=212cosx-12sinxfx=2(cos45°cosx-sin45°sinx) fx=2cosπ4+xAgain, fx=212cosx-12sinxfx=2(sin45°cosx-cos45°sinx)f(x) =2 sinπ4-x

(iii) Let f(x) =24 cosx+7sinxDividing and multiplying by 242+72, i.e.by 25, we get: f(x) =252425 cosx +725sinxf(x) =25(sinα cosx+ cosα sinx), where sinα =2425 and cosα =725f(x) =25 sin(α+x), where tanα = 247 .Again, f(x) =252425 cosx +725sinxf(x) =25(cosα cosx+ sinα sinx), where cosα=2425, sinα= 725.f(x) =25 cos(α-x), where tanα =724.

flag
Suggest Corrections
thumbs-up
12
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon