Reduce [11−4i−21+i]=[3−4i5+i] to the standard form.
[11−4i−21+i]=[3−4i5+i]=[1+i−2+8i(1−4i)(1+i)][3−4i5+i]
=[−1+9i1+i−4i−4i2][3−4i5+i]
=[−1+9i5−3i][3−4i5+i]
=−3+4i+27i−36i225+5i−15i−3i2=33+31i28−10i×28+10i28+10i
=924+330i+868i+310i2(28)2−(10i)2
=614+1198i784+100 (∵ i2=−1)
=2(307+599i)884=307+599i442