Reduce the equation √3 x+y+2=0 to:
(i) slope-intercept form and find slope and y-intercept;
(ii) intercept form and find intercept on the axes;
(iii) the normal form and find p and α.
(i) Slope intercept form (y=mx+c)
√3 x+y+2=0
⇒ y=−√3 x−2
⇒ m=−√3, c=−√2
y-intercept = -2, slope =−√3
(ii) Intercept form (xa+yb=1)
√3 x+y+2=0
⇒ √3 x+y=−2
⇒ √3x−2+y−2=1
⇒ x−2√3+y−2=1
⇒ x intercept =−2√3, y intercept = -2
(iii) Normal form (x cos α+y sin α=p)
√3 x+y+2=0
⇒ −√3 x−y=2
⇒ (−√32)x+(−12)y=1
⇒ cosα=−√32=cos 210∘ and sin α=−12
=sin 210∘
⇒ p=1, α=210∘