Reduce the following equations to the normal form and find p and α in each case :
(i) x+√3 y−4=0 (ii) x+y+√2=0 (iii) x−y+2 √2=0 (iv) x−3=0 (v) y−2=0
(i) x+√3 y−4=0
Divide the equation by 2, we get
12X+√32y=2
x cos 60+y sin 60=2
So, p=2 and α=60∘=π3=60
(ii) x+y+√2=0
x+y=−√2
Dividing each term by √(1)2+(1)2=√2
x√2+y√2=−1⇒−x√2−y√2=1
Comparing with x cos α+y sin α=p
cos α=−1√2, sin α=−1√2,p=1
Both are negative
α is in III quadrant
⇒ α=ππ4=5π4=225∘
(iii) x−y+2 √2=0
−x+y=2 √2
Dividing each term by √(1)2+(1)2=√2
−x√2+y√2=2
Comparing with x cos α+y sin α=p
cos α=−1√2, sin α=−1√2, p=2
α is in II quadrant
⇒ a=π4+π2=3π4=135∘, p=2
(iv) x−3=0
x=3
Comparing with x cos α+y sin α=p
cos α=1
=cos 0
⇒ α=0
p=3
(v) y−2=0
y=2
Comparing with x cos α+y sin α=p
sin α=1
α=π2, p=2