Rationalizing the denominator of 11−cosθ+2isinθ.
11−cosθ+2isinθ×1−cosθ−2isinθ1−cosθ−2isinθ
=(1−cosθ)−2isinθ(1−cosθ)2−(2isinθ)2
=(1−cosθ)−2isinθ(1−cosθ)2+4sin2θ
=(1−cosθ)−2isinθ1+cos2θ−2cosθ+4(1−cos2θ)
=(1−cosθ)−2isinθ1+cos2θ−2cosθ+4−4cos2θ
=(1−cosθ)−2isinθ−3cos2θ−2cosθ+5
=(1−cosθ)−2isinθ−3cos2θ−5cosθ+3cosθ+5
=(1−cosθ)−2isinθ−cosθ(3cosθ+5)+1(3cosθ+5)
=(1−cosθ)−2isinθ(3cosθ+5)(1−cosθ)
=1−cosθ(3cosθ+5)(1−cosθ)−2isinθ(3cosθ+5)(1−cosθ)
=13cosθ+5+i2sinθ(3cosθ+5)(cosθ−1)