Represent √3.5,√9.4and√10.5 on the real number line.
(i) √3.5
= √(3.5+12)2−(3.5−12)2=√(4.52)2−(2.52)2=(2.25)2−(1.5)2
Steps of construction :
(a) Draw a line segment BC = 1.25 cm.
(b) At C, draw a ray CX making an angle of 90∘
(c) With centre B and radius 2.25 cm, draw an arc which intersects CX at A.
(d) Join AB.
AC = =√AB2−BC2=√(2.25)2−(1.25)2=√5.0625−1.5625=√3.5
(ii) √9.4
=√(9.4+12)2−(9.4−12)2=√(10.42)2−(8.42)2=√(5.2)2−(4.2)2
Steps of construction :
(a) Draw a line segment BC = 4.2 cm.
(b) At C, draw a ray CX making an angle of 90∘.
(c) With centre B and radius 5.2 cm draw an arc which intersects CX at A.
(d) Join AB.
AC = =√AB2−BC2=√(5.2)2−(4.2)2=√27.04−17.64=√9.40=√9.4
(iii) √10.5
=√(10.5+12)2−(10.5−12)2=√(11.52)2−(9.52)2=√(5.75)2−(4.75)2
Steps of construction :
(a) Draw a line segment BC = 5.75 cm.
(b) At C, draw a ray CX making an angle of 90∘.
(c) With centre B and radius 5.75 cm, draw an arc intersecting CX at A.
(d) Join AB.
AB = √(5.75)2−(4.75)2=√33.0625−22.5625=√10.5000=√10.5