Resolve 3x2+x−2(x−2)2(1−2x) into partial fractions.
Open in App
Solution
Assume 3x2+x−2(x−2)2(1−2x)=A1−2x+Bx−2+C(x−2)2; ∴3x2+x−2=A(x−2)2+B(1−2x)(x−2)+C(1−2x) Let 1−2x=0, then A=−13; Let x−2=0, then C=−4 To find B, equate the coefficients of x2, thus 3=A−2Bl whence B=−53 ∴3x2+x−2(x−2)2(1−2x)=−13(1−2x)−53(x−1)−4(x−2)2