F=x4(x−1)(x−2)
=[(x−1)−(x−2)]x4(x−1)(x−2)
=x4x−2−x4x−1
=[(x−2)+2)]x3x−2−[(x−1)+1]x3x−1
=x3+2x3x−2−x3−x3x−1
=2x3x−2−x3x−1
=2[x−2+2]x2x−2−[x−1+1]x2x−1
=2x2+4x2x−2−x2−x2x−1
=x2+4x2x−2−x2x−1
=x2+4[x−2+2]xx−2−[x−1+1]xx−1
=x2+4x+8xx−2−x−xx−1
=x2+3x+8(x−2+2)x−2−(x−1+1)x−1
=x2+3x+8+16x−2−1−1x−1
=x2+3x+7+16x−2−1x−1.
Hence
x4(x−1)(x−2)=x2+3x+7+16x−2−1x−1