The correct option is A −54(3−x)+34(1+x)
We have
1−2x3+2x−x2=(1−2x)(3−x)(1+x)
Let 1−2x3+2x−x2=1−2x(3−x)(1+x)=A3−x+B1+x ...(i)
∴A=limx→3(3−x)[(1−2x)(3−x)(1+x)]
=limx→3[(1−2x)(1+x)] =1−61+3 =−54
And B=limx→−1(1+x)[(1−2x)(3x−x)(1+x)]
=limx→−1[1−2x3−x] =1+23+1 =34
Substituting the value of A and B in (i), we have
1−2x3+2x−x2=−54(3−x)+34(1+x)
Which are the required partial fractions.
Hence, option 'A' is correct.