The correct option is
C 12(x−3)+(5x−5)2(x2+2x+5)Let 2x2−11x+5(x−3)(x2+2x+5)=Ax−3+Bx+Cx2+2x+5 ...(i)
⟹2x2−11+5=A(x2+2x+5)+(Bx+C)(x−3) ...(ii)
Putting x−3=0 or x=3 in (i), we obtain
2(3)2−11(3)+5=A(32+2.3+5)+0
18−33+5=20A
∴A=−12
equation the coefficient of x2 and x in (ii), we have
⟹2=A+B
∴B=2−A=2−(−12)
∴B=52
and −11=2A−3B+C
⟹−11=−1−152+C
⟹C=−11+1+152
=−10+152
=−52
Substituting the value of A, B and C in (i), we have
2x2−11x+5(x−3)(x2+2x+5)=−12(x−3)+(5x−5)2(x2+2x+5)
which are the required partial fractions.
Hence, option 'B' is correct.