The correct option is B 215+7712(3x2+1)−15320(5x2+3)
In the given fraction everywhere x2, put x2=t for the sake of partial fraction.
∴(2x2+3)(x2+4)(3x2+1)(5x2+3)=(2t+3)(t+4)(3t+1)(5t+3)=215+f(t)(3t+1)(5t+3)
where f(t) is the linear function of t
(∵2.13.5=215)
Let (2t+3)(t+4)(3t+1)(5t+3)=215+A3t+1+B5t+3
...(i)
∴A=limx→−13(3t+1)[(2t+3)(t+4)(3t+1)(5t+3)] =limt→−13[(2t+3)(t+4)(5t+3)]
=⎡⎢
⎢
⎢
⎢⎣(−23+3)(−13+4)(−53+3)⎤⎥
⎥
⎥
⎥⎦ =7712
and B=limt→−35(5t+3)[(2t+3)(t+4)(3t+1)(5t+3)] =limt→−35[(2t+3)(t+4)(3t+1)]
=⎡⎢
⎢
⎢
⎢⎣(−65+3)(−35+4)(−95+1)⎤⎥
⎥
⎥
⎥⎦ =95×175−45 =−15320
Substituting the value of A and B in (i), then
(2t+3)(t+4)(3t+1)(5t+3)=215+7712⋅1(3t+1)−153201(5t+3)
In last substituting t=x2, we get
(2x2+3)(x2+4)(3x2+1)(5x2+3)=215+7712(3x2+1)−15320(5x2+3)
which are required partial fractions.
Hence, option 'B' is correct.