The correct option is C x+1+52x+3+2x−4
Here given fraction is an improper fraction then by actual division i.e.,
2x2−5x−12⇃2x3−3x−8x−26⇂x+1
2x3−5x2−12x
−++
______________________
2x2+4x−26
2x2−5x−12
−++
______________________
9x−14
∴2x3−3x2−8x−262x2−5x−12=x+1+9x−142x2−5x−12
=x+1+(9x−14)(2x+3)(x−4)
∴2x3−3x2−8x−262x2−5x−12=x+1+9x−14(2x+3)(x−4) ....(i)
Let 9x−14(2x+3)(x−4)=A2x+3+Bx−4 ....(ii)
⟹9x−14=A(x−4)+B(2x+3) ....(iii)
Putting x−4=0 or x=4 in (iii), we get
36−14=0+B(8+3)
∴B=2
Putting 2x+3=0 or x=−3/2 in (iii), we get
9×−32−14=A(−32−4)+0
⟹−552=−112A
∴A=5
Substituting the value A and B in (ii), then
9x−14(2x+3)(x−4)=52x+3+2x−4 ....(iv)
From (i) & (iv) we get the required partial fractions
2x3−3x2−8x−262x2−5x−12=x+1+52x+3+2x−4
Hence, option 'D' is correct.