Resolve (2x−5)(x+3)(x+1)2 into partial fractions.
A
−114(x+3)+114(x+1)−72(x+1)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
114(x+3)−114(x+1)−72(x+1)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−114(x+3)+114(x+1)−52(x+1)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−114(x+3)+114(x+1)+52(x+1)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−114(x+3)+114(x+1)−72(x+1)2 Let (2x−5)(x+3)(x+1)2=Ax+3+Bx+1+C(x+1)2 ...(i) ⟹(2x−5)(x+3)(x+1)2=A(x+1)2+B(x+3)(x+1)+C(x+3)(x+3)(x+1)2 ⟹2x−5=A((x+1)2+B(x+3)(x+1)+C(x+3) ...(ii)
Putting x+1=0 or x=−1 in (ii), we obtain −2−5=0+0+C(−1+3)
∴C=−72
Putting x+3=0 or x=−3 in (ii), we obtain −6−5=A(−3+1)2+0+0
∴A=−114
Equating the coefficient of x2 on both sides of (ii), then 0=A+B