Resolve 6x4+11x3+18x2+14x+6(x+1)(x2+x+1)2 into partial fractions.
A
5x+1+(x−1)(x2+x+1)+(3x+2)(x2+x+1)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
5x+1−(x−1)(x2+x+1)+(3x+2)(x2+x+1)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
5x+1+(x−1)(x2+x+1)−(3x+2)(x2+x+1)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
5x+1+(x+1)(x2+x+1)+(3x+2)(x2+x+1)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A5x+1+(x−1)(x2+x+1)+(3x+2)(x2+x+1)2 The given fraction is a proper fraction Let 6x4+11x3+18x2+14x+6(x+1)(x2+x+1)2=Ax+1+Bx+Cx2+x+1+Dx+E(x2+x+1)2 ...(i) ⟹6x4+11x3+18x2+14x+6=A(x2+x+1)+(Bx+C)(x+1)(x2+x+1)
+(Dx+E)(x+1) ...(ii) Putting x+1=0 or x=−1 in (ii), we obtain 6(−1)4+11(−1)3+18(−1)2+14(−1)+6=A(1−1+1)2+0+0 ⟹6−11+18−14+6=A ∴A=5 Now puttitng x2+x+1=0 or x2=−x−1 in (ii), then 6(−x−1)2+11x(−x−1)+18(−x−1)+14x+6=0+0+D(−x−1)+Dx+Ex+E ⟹−5x2−3x−6=−D+Ex+E ⟹−5(−x−1)−3x−6=−D+Ex+E (∴x2=−x−1) ⟹2x−1=(−D+E)+Ex on comparing, E≠2 and −D+E=−1 or D=3 Equating the coefficient of x4 in (ii), we obtain 6=A+B ⟹6=5+B ∴B=1 Equzating the constant terms in (ii), we obtain 6=A+B+E ⟹6=5+C+2 ∴C=−1 Substituting the value of a, B, C, D and E in (i), we get 6x4+11x3+18x2+4x+6(x+1)(x2+x+1)2=5x+1+(x−1)(x2+x+1)+(3x+2)(x2+x+1)2 which are the required partial fractions. Hence, option 'A' is correct.