The correct option is A −14(1+x)+(x−1)4(1+x2)+(x+1)2(1+x2)2
Let x(1+x)(1+x2)2=A1+x+Bx+C(1+x2)+(Dx+E)(1+x2)2 ...(i)
⟹x=A(1+x2)2+(Bx+C)(1+x)(1+x2)+(Dx+E)(1+x) ...(ii)
Putting 1+x=0 or x=−1 in (ii), we obtain
−1=A[1+(−1)2]2+0+0
∴A=−14
Putting 1+x2=0 or x2=−1 in (ii), we obtain
x=0+0+Dx+D(−1)+E+Ex
⟹x=(D+E)x+(E−D)
Equating the coefficient of x and constant term, we get
D+E=1
and E−D=0
∴D=E=12
Comparing the constant terms in (ii), we obtain
0=A+C+E (For comparing constant terms putting x=0)
or 0=−14+C+12
⟹0=C+14
∴C=−14
and comparing the coefficient of x4 in (ii), we obtain
0=A+B
∴B=−A
B=14
Substituting the value of A, B, C, D, and E in (1), then
x(1+x)(1+x2)2=−14(1+x)+(x−1)4(1+x2)+(x+1)2(1+x2)2
which are the required partial fractions.
Hence, option 'A' is correct.