x1−x3=x(1−x)(1+x+x2)
⇒x1−x3=A1−x+Bx+C1+x+x2 .....(1)
⇒x=A(1+x+x2)+(Bx+C)(1−x) ....(2)
Putting 1−x=0⇒x=1 in equation (2) we get
⇒1=A(1+1+1)+0
⇒1=3A
⇒A=13 ....(3)
Putting x=0 in equation (2) we get,
⇒0=A(1+0+0)+(B×0+C)(1−0)
⇒0=A+C
Putting the value of A from equation (3) we get
⇒0=13+C
C=−=13 ........(4)
Comparing the coefficients of x2 in both the sides of equation (2) we get.
⇒O=A−B
⇒B=A
Putting the value of A from equation (3)
B=13 ....(5)
Putting the value of A,B,C in equation (1) we get,
x1−x3=13(1−x)+x−13(1+x+x2).