x2−5x−1(x−1)2(x−2)=Ax−1+B(x−1)2+Cx−2
⇒x2−5x−1(x−1)2(x−2)=A(x−2)(x−1)+B(x−2)+C(x−1)2(x−1)2(x−2).....(2)
⇒x2−5x−1=A(x−2)(x−1)+B(x−2)+C(x−1)2.....(1)
Putting x−1=0⇒x=1 in equation (2) we get.
⇒12−5×1−1=0+B(1−2)+0
⇒−5=−B
⇒B=5
Putting x−2=0⇒x=2 in equation (2)
⇒22−5×2−1=0+0+C(2−1)2
⇒4−10−1=C
⇒C=−7
Comparing the coefficients of x2 in both the sides in equation (2) we get.
⇒1=A+C
Putting the value of C from equation (1)
x2−5x−1(x−1)2(x−2)=8x−1+5(x−1)2−7x−2.