The correct option is D −12(x2+x+1)+12(x2−x+1)
We have
xx4+x2+1=x(x2+x+1)(x2−x+1)
(Remember)
Let
x(x2+x+1)(x2−x+1)=Ax+Bx2+x+1+Cx+Dx2−x+1
...(i)
⟹x=(Ax+B)(x2−x+1)+(Cx+D)(x2+x+1)
...(ii)
Putting x2−x+1=0
or x2=x−1
in (ii), we obtain
x=0+(Cx+D)(x−1+x+1)
⟹x=(Cx+D)2x
⟹12=Cx+D
On comparing, C=0 and D=12
Again putting
x2+x+1=0
or
x2=−x−1 in (ii), we obtain
x=(Ax+B)(−x−1−x+1)+0
⟹x=(Ax+B)(−2x)
⟹−12=Ax+B
On Comparing, A=0,B=−12
Substituting the value of A,
B, C, D in (i), we have
x(x2+x+1)(x2−x+1)=0−12x2+x+1+0+12x2−x+1
or
xx4+x2+1=−12(x2+x+1)+12(x2−x+1)
which are the required partial fractions.
Hence, option 'A' is correct.