In the given expression 4m4+9n4−24m2n2, add and subtract 12m2n2 to make it a perfect square as shown below:
4m4+9n4−24m2n2=(4m4+9n4+12m2n2)−24m2n2−12m2n2
=[(2m2)2+(3n2)2+2(3)(2)m2n2]−24m2n2−12m2n2=(2m2+3n2)2−36m2n2
(using the identity (a+b)2=a2+b2+2ab)
We also know the identity a2−b2=(a+b)(a−b), therefore,
Using the above identity, the expression (2m2+3n2)2−36m2n2can be factorised as follows:
(2m2+3n2)2−36m2n2=(2m2+3n2)2−(6mn)2=(2m2+3n2+6mn)(2m2+3n2−6mn)
Hence, 4m4+9n4−24m2n2=(2m2+3n2+6mn)(2m2+3n2−6mn)