In the given expression 9x4+4y4+11x2y2, add and subtract 12x2y2 to make it a perfect square as shown below:
9x4+4y4+11x2y2=(9x4+4y4+12x2y2)+11x2y2−12x2y2=[(3x2)2+(2y2)2+2(3)(2)x2y2]−x2y2
=(3x2+2y2)2−x2y2
(using the identity (a+b)2=a2+b2+2ab
We also know the identity a2−b2=(a+b)(a−b), therefore,
Using the above identity, the expression (3x2+2y2)2−x2y2can be factorised as follows:
(3x2+2y2)2−x2y2=(3x2+2y2)−(xy)2=(3x2+2y2+xy)(3x2+2y2−xy)
Hence, 9x4+4y4+11x2y2=(3x2+2y2+xy)(3x2+2y2−xy)