In the given expression m4+n4−18m2n2, add and subtract 2m2n2 to make it a perfect square as shown below:
m4+n4−18m2n2=(m4+n4+2m2n2)−18m2n2−2m2n2=(m2+n2)2−20m2n2
(using the identity (a+b)2=a2+b2+2ab)
We also know the identity a2−b2=(a+b)(a−b), therefore,
Using the above identity, the equation (m2+n2)2−20m2n2can be factorised as follows:
(m2+n2)2−20m2n2=(m2+n2)2−(√20mn)2=(m2+n2+√20mn)(m2+n2−√20mn)
Hence, m4+n4−18m2n2=(m2+n2+√20mn)(m2+n2−√20mn)