The correct option is B 2+1x+3−1x−1
Let I=2x2+5x−11x2+2x−3=2(x2+2x−3)+x−5x2+2x−3
=2+x−5x2+2x−3=2+x−5(x+3)(x−1)
Now x−5(x+3)(x−1)=A(x−1)+B(x+3)
⇒x−5=A(x+3)+B(x−1)
On comparing coefficients we get
1=A+B,−5=3A−B⇒A=−1,B=2
Therefore
I=2−1x−1+2x+3
Hence, option 'B' is correct.