The correct option is A 3x−1x2+x+1+2(x+1)2−3(x+1)
Let x3−3x−2(x2+x+1)(x+1)2=Ax+Bx2+x+1+Cx+1+D(x+1)2
⇒x3−3x−2=(Ax+B)(x+1)2+C(x2+x+1)(x+1)+D(x2+x+1)⇒x3−3x−2=A(x3+2x2+2x)+B(x2+2x+1)+C(x3+2x2+2x+1)+D(x2+x+1)
On comapring coefficients we get
A+C=1,2A+B+2C+D=0,2A+2B+2C+D=−3,B+C+D=−2⇒A=3,B=−1,C=−3,D=2
Hence
x3−3x−2(x2+x+1)(x+1)2=3x−1x2+x+1+−3x+1+2(x+1)2
Hence, option 'A' is correct.