x2−10x+3(x−1)(x−2)(x−3)=Ax−1+Bx−2+Cx−3 where A ,B ,C are to be determined .
=>x2−10x+3=A(x−2)(x−3)+B(x−1)(x−3)+C(x−1)(x−2)
For x=1,=>12−10(1)+3=A(1−2)(1−3)+B(0)+C(0)
=>−6=2A
=>A=−3 -(1)
For x=2,=>22−10(2)+3=A(0)+B(2−1)(2−3)+C(0)
=>−13=−B
=>B=13 -(2)
For x=3,=>32−10(3)+3=A(0)+B(0)+C(3−1)(3−2)
=>−18=2C
=>C=−9 -(3)
Therefore from (1),(2),(3) , we get x2−10x+3(x−1)(x−2)(x−3)=−3x−1+13x−2−9x−3